

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. Attempt six questions in all.
3. Question No. 1 is compulsory.
4. The questions should be numbered in accordance with the number in the question paper.
5. Calculators and log tables may be used.
6. Explain any five of the following:
(i) The first ionization enthalpy of Al is less than that of Mg but reverse is true for the second ionization enthalpy of Al. Explain.
P.T.O.
(ii) Half-filled and fully - filled orbitals are associated wit extra stability.
(iii) 's' orbitals are spherically symmetrical.
(iv) Water has maximum density at $4^{\circ} \mathrm{C}$.
(v) Bond length in N_{2}^{+}is greater than in N_{2}, while thc bond length in NO^{+}is less than NO.
(vi) NO_{2} is bent whereas CO_{2} is linear.
7. (i) Write the Schrodinger wave equation for an electron in H atom and give the significance of the various terms involved.
(ii) Draw neatly labelled diagrams for radial probability distribution curves for 2 s and 2 p orbitals.
(iii) Calculate the ionic radii of K^{+}and Cl^{-}using Pauling's method if the inter-nuclear distance between these ions is 314 pm .
8. (i) State the Heisenberg's Uncertainty Principle. Give its importance on micro and macro scales.
9. (i) State the Pauli Exclusion Principle. How can this
(ii) What are degenerate orbitals? Comment upon the degeneracy of the $3 \mathrm{~s}, 3 \mathrm{p}$ and 3 d orbitals for the hydrogen atom and multi electron systems.
(iii) What do you understand by resonance? Write resonating structures for $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{N}_{3}{ }^{-}$. principle be used to fix the maximum capacity of the various energy levels in an atom?
(ii) If an electron shifts from $\mathrm{n}=6$ to $\mathrm{n}=1$ and $\mathrm{n}=5$ to $\mathrm{n}=2$ levels, in which portion of the electromagnetic spectrum would these lines lie? Name the corresponding spectral series.
(iii) On which law is the Born-Haber Cycle based? Set up a Born-Haber Cycle for the formation of MgO from Magnesium metal and Oxygen, i.e. $\mathrm{Mg}(\mathrm{s})+1 / 2$ $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{s})$.
10. (i) Draw neatly labelled molecular orbital diagrams of N_{2} (with s-p mixing) and F_{2}. Predict the bond order in each case.
(ii) What are the basic principles of VSEPR theory? Using this theory, predict the shape of the following: $\mathrm{I}_{3}{ }^{-}$and SF_{6}.
(iii) What are Slater rules? Calculate the screening constant and the effective nuclear charge for the Valence electrons in gallium ($Z=31$).
(i) Select from each group of species the one having the smallest size. Justify your answer.
(a) $\mathrm{Q}, \mathrm{O}^{-}, \mathrm{O}^{2-}$.
(b) $\mathrm{K}^{+}, \mathrm{Sr}^{2+}, \mathrm{Al}^{3+}$. And
(ii) Which of the elements $\mathrm{Na}, \mathrm{Mg}, \mathrm{Si}$ \& P will have the greatest difference between the first and second ionisation enthalpy? Explain.
(iii) Calculate the per cent ionic character in the Cs-F bond in CsF. The electronegativity values for Cs and F are 0.7 and 4.0 respectively. Predict the nature of the bonding in CsF . $\quad 16(9 .-0.7)+3.5\left(4-0.7 \psi_{2} \times 3\right)$
11. (i) Identify the example, which best suits the property mentioned. Giving reasons for your choice :
(a) Higher dipole moment: NH_{3} or NF_{3}
(b) Higher boiling point: ortho- nitrophenol or paranitrophenol.
(ii) The bond angles in $\mathrm{CH}_{2} \mathrm{~F}_{2}$ are $\mathrm{HCH}=112.3^{\circ}$ and $\mathrm{FCF}=108.3^{\circ}$. Calculate the s character used by the carbon atom in the orbital directed to the hydrogen and fluorine atoms. Discuss the result in terms of Bent's rule.
(iii) Calculate the limiting radius ratio of cation to that of anion when co-ordination number is four (tetrahedral geometry). What is the co-ordination number of cation in the crystal, when $\mathrm{r}_{\mathrm{M}}{ }^{+}=97 \mathrm{pm}$ and $\mathrm{r}_{\mathrm{X}}{ }^{-}=221 \mathrm{pm}$?
12. (i) Using Band theory explain how Na and Be metals act as conductors.
(ii) How is percent ionic character related to electronegativity difference and dipole moment? The dipole moment of HI is 0.384 D and bond distance is 1.60 pm . What will be the \% of ionic character of HI?
(iii) What do you understand by equivalent and nonequivalent hybrid orbitals? Give one example each. (4×3)

Sr. No. of Question Paper : 6482
 HC

Unique Paper Code : 32171102

Name of the Paper : Physical Chemistry I
Name of the Course : B.Sc. (Honours) Chemistry
Semester : I
Duration : 3 Hours
Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. Attempt six questions.
3. First question is compulsory.
4. Use of scientific calculators and log tables is allowed.
5. Explain any five :
(a) pH of neutral water at $110^{\circ} \mathrm{C}$ is less than 7 but it is not acidic in nature.
(b) Solubility of AgCl will decrease if some AgNO_{3} is added to its saturated solution.
(c) Addition of acetic acid to water decreases its surface tension, whereas addition of sodium chloride increases it.
P.T.O.
(d) At room temperature the distribution of molecular velocities of hydrogen and helium is same.
(e) Heat capacity of a polyatomic gas is greater than that of a monoatomic gas.
(f) K^{+}and Cl^{-}are indistinguishable by X ray diffraction method.
($3 \times 5=15$)
6. (a) Derive the van der Waals equation of state for gases. How does it take into account the deviation from ideality?
(b) Draw, label and explain the Andrews isotherms for a real gas.
(c) Find the temperature at which 3 moles of SO_{2} will occupy a volume of $20 \mathrm{dm}^{3}$ at a pressure of 1.5 MPa a) using ideal gas equation b) using the van der Waals equation ($a=678.88 \mathrm{dm}^{6} \mathrm{KPa} \mathrm{mole}^{-2}$ and $\mathrm{b}=5.6 \times 10^{-2}$ $\mathrm{dm}^{3} \mathrm{~mol}^{-1}, \mathrm{R}=8.314 \mathrm{~K} \mathrm{~Pa} \mathrm{dm}^{3}$).
$(4,4,4)$
7. (a) Derive the expressions for the pH of the solutions for the titration of strong acid with strong base - (i) before the equivalent point (ii) at the equivalent point (iii) after the equivalent point.
(b) Define buffer Index. Derive an expression for it.
(c) Calculate the solubility product of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ if its solubility is $8 \times 10^{-5} \mathrm{~mol}$ per liter. What is the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in a solution containing 0.01 mol per liter of $\mathrm{K}_{2} \mathrm{CrO}_{4}$?
8. (a) What is the coefficient of viscosity of a liquid? What are its SI units? Describe a method for determining the coefficient of viscosity in the lab.
(b) How do the detergents help in cleaning?
(c) Describe phenomenon of capillary action?
(d) What is the radius of the drop of liquid falling from a capillary tube 1 mm in diameter at 300 K . (Surface tension of liquid $=65 \times 10^{-3} \mathrm{Nm}^{-1}$, density $=1.3 \mathrm{gcm}^{-3}$).
9. (a) Describe all the symmetry elements of a cube.
(b) Write the Millar indices for the planes with the following intercepts (i) a, $1 / 3 \mathrm{~b} /, 1 / 4 \mathrm{c}$ (ii) $0 \mathrm{a}, 1 \mathrm{~b}, 2 \mathrm{c}$ (iii) $3 \mathrm{a}, 2 \mathrm{~b}, 4 \mathrm{c}$ (iv) $1 / 2 \mathrm{a}, 1 / 4 \mathrm{~b}, \infty \mathrm{c}$
(c) X ray powder for molybdenum has reflections at
$\begin{array}{llllllll}\theta \text { values } & 20.25^{\circ} & 29.30^{\circ} & 36.82^{\circ} & 43.81^{\circ} & 50.69^{\circ} & 58.80^{\circ}\end{array}$ 66.30° and other larger angles, when $\mathrm{K}_{\alpha} \mathrm{X}$ rays from Cu are used ($\lambda=154 \mathrm{pm}$)
(i) What is the type of crystal of molybdenum lattice?
(ii) What is the length of side of the unit cell?
$(4,4,4)$
10. (a) Derive Bragg's law. How is it used to determine the crystal structure?
P.T.O.
(b) Derive an expression for the viscosity of a gas.
(c) Calculate the pH of the following solutions
(i) 0.11 N Sodium acetate (ii) a solution formed by mixing $20 \mathrm{ml}, 0.1 \mathrm{M}$ Acetic acid and 10 ml 0.1 M Sodium acetate. $\left(\mathrm{K}_{\mathrm{a}}\right.$ of Acetic Acid is $\left.1.74 \times 10^{-5}\right)$
11. (a) Derive expressio for hydrolysis constant and pH of the solution of sait of a strong acid and a weak base.
(b) Derive the expressions for the heat capacities of linear r and non linear polyat ic molecules on the basis of equipartit: of erares.
(c) (i) Define mean free p: in a gas assembly.
(ii) Calc iate the number bimolecular collisions per $\mathrm{sec} \mathrm{cm}^{-3}$ in Argon at a pressure of 101.325 KPa at a tem $0^{\circ} \mathrm{C}$ if the collision diameter is 350 pm . $\left(\mathrm{k}=1.38 \times 1 \mathrm{v}^{-23} \mathrm{~J} \mathrm{~K}^{-1}\right)$.
12. Write short note on any three of the following:
(a) Experimental determination of critical constants of a gas
(b) Buffer Action
(c) Theory of acid-base indicators
(d) Laws of crystallography

Time : 3 hrs
Max marks : 75

Instructions for candidates

- Write your Roll No on the top immediately on receipt of the question paper.
- Attempt six questions in all
- Question no. 1 is compulsory and carries 15 marks
- All other questions carry 12 marks each.

1. Attempt any five questions from the following:
a) Write the electronic configuration of the following elements:

$$
\begin{aligned}
\text { i. } & \mathrm{Cu}-29 \\
\text { ii. } & \mathrm{La}-57 \\
\text { iii. } & \mathrm{Cr}-24
\end{aligned}
$$

b) Arrange the following species in order of increasing size giving reasons
c) Distinguish between Electron gain enthalpy and Electronegativity.
d) Draw the radial probability distribution curves for $2 \mathrm{~s}, 2 \mathrm{p}$, and 3d orbitals
e) Which of the following is more covalent and why?
i. $\quad \mathrm{CuCl}$ and KCl
ii. AgF or AgI
iii. $\quad \mathrm{SnCl}_{2}$ or SnCl_{4}
f) Explain which is greater and why? HNH angle in NH_{3} or HPH angle in PH_{3}.
2. a) Write the time dependent Schrodinger wave equation for hydrogen atom and define each term in it.
b) Explain the significance of ψ and ψ^{2}.
c) Write the conditions and importance for normal and orthogonal wave functions.
3. a) Explain why HF is a liquid whereas HCl is a gas.
b) Explain Slaters rule for determining Z^{*} for 4 S electron of copper and $19^{\text {th }}$ electron of K .
c) State Hud's rule of maximum multiplicity and its consequences.
4. a) Explain why F is more electronegative than Cl whereas F has lower electron gain enthalpy than Cl .
b) Explain Heisenberg's uncertainty principal and its significance.
c) Describe Mulliken Safe scale of electronegativity.
5. Write short notes on any three of the following.
a) Fazan's rules
b) Hydrogen bonding
c) Pauling's scale of electronegativity
d) Factors affecting ionisation enthalpy.
6. a) How many types of quantum numbers are there and what information do they give about the orbitals.
b) Give all possible orbitals for $\mathrm{n}=4$ and also determine the maximum number of electrons which can exist in a completely filled $n=4$ level.
c) State de Broglie's wave equation, its importance and its relationship with Bohr's orbital.
7. a) Explain why?
i. Meta and para-nitrophenols have higher boiling points than the ortho isomer.
ii. There is a substantial decrease in first ionisation energy observed between Mg and Ca and not between Al and Ga .
b) List four characteristic properties of a well-behaved wave function.
c) Write a short note on ionic radii and explain one method of determining ionic radii.
Sl-NO. OD Q.P: :5602

Unique Paper Code :217103
$\begin{array}{ll}\text { Name of the Paper } & \text { : CHHT Organic Chemistry } \\ \text { Name of the Course } & \text { : B.Sc.(Hons.) CH }\end{array}$
Name of the Course : B.Sc.(Hons.) C1/Tl-102
Semester : I
Duration : 3 Hours

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. Answer five questions in all.
3. Account for the following statements:
(a) Boat conformation of cyclohexane is less stable than the chair conformation.
(b) Both Racemic and Meso compounds are optically inactive.
(c) Straight Chain isomeric alkanes have higher boiling points than branched chain alkanes.
(d) Methyl group in Toluene is ortho-para directing towards electrophilic aromatic substitution.
(e) Anti Markovnikov addition in alkenes is not observed in case of HI and HCl
(f) Methoxy methyl carbocation is more stable than propyl carbocation even though both are primary carbocations.
(g) Cyclopentadiene is not aromatic unlike cyclopentadienyl anion.
(h) pK_{a} values for p -Nitrophenol and phenol are 7.14 and 9.95 respectively.
(i) o-Hydroxybenzaldehyde has a lower boiling point as compared to its m and p isomers.
(j) Alkenes are more reactive than alkynes towards electrophilic addition reaction. (1.5×10)
4. a) How many optical isomers are possible for 2,3-Dicholoropentane? Draw their fischer projections and give the relationship between them. Also assign absolute configuration (R/S) at each chiral center.
b) Explaining the priority order, assign E / Z or R / S configuration to the following

(ii)

c) Convert the following into Fischer projection and designate as erthyro or three.

5. a) Calculate the percentage of isomers formed during the monobromination of 2,3 Dimethylbutane. The relative reactivity of primary, secondary and tertiary hydrogen are $1,82,1600$ respectively.
b) Identify the major product obtained when 1,3-Butadiene reacts with one mole of Br_{2} at low temperature and high temperature respectively. Give mechanistic details.
c) Account for the formation of products (with stereochemistry) when cis-But-2-ene is treated with Bromine in CCl_{4} and alkaline KMnO_{4}
(5x3)
6. a) Explain the mechanism involved in the sulphonation of benzene. Give the characteristic features of the reaction.
b) What happens when 3,3 -Dimethylbutene undergoes acid catalysed hydration. Giving mechanism, account for the formation of product(s).
c) What are the limitations of Friedal's Crafts Alkylation? How are they overcome in Friedal's Crafts acylation?
7. a) What happens when propene is treated with NBS in presence of CCl_{4} ? Account for the formation of products?
b) Why nitration of nitrobenzene is slow as compared to nitration of toluene?
c) What is the difference between inductive and electromeric effect?
d) How will you distinguish pent-1-yne and pent-2-yne chemically? Give the chemical reactions involved?
e) Why dipole moment of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is greater than of CHCl_{3} ?

6 a) Carry out the following conversions:
i) Benzene to p -NitroToluene
ii) Benzene to benzoic acid
iii) But-2-ene to trans-2-Butene
iv) Propyne to Acetone
b) Predict the products of the following reactions:
(i)

(ii)

C

D + E
(iii)

\qquad
\qquad $\mathrm{D}_{2} \mathrm{O}$ - G
Q. 7 Write short notes on any five of the following:
a) Baeyer's Strain Theory
b) Acidity of Alkynes
c) Mechanism of Halogenation of Alkanes
d) Absolute and Relative Configuration
e) Diels Alder Reaction
f) Resolution of Racemic Mixture
[This que
Sl. No. of Q. Paper
Unique Paper Code
Name of the Course
Name of the Paper

Unique Paper Code
Name of the Course

Name of the Paper

Semester
Time: 3 Hours
: I
: 235164
: B.Sc.(Honours) Chemistry
: Mathematics I (MACT 101)

Maximum Marks : 75

Instructions for Candidates :

(a) Write your Roll No. on the top immediately on receipt of this question paper.
(b) All questions are compulsory .
(c) Attempt any two parts from each question.
(d) Marks are indicated against each question.

1. (a) (i) An actual volume of $35.00 \mathrm{~cm}^{3}$ is measured as $35.15 \mathrm{~cm}^{3}$. Calculate
(1) Absolute uncertainity.
(2) Fractional uncertainity.
(3) Percentage uncertainity.
(ii) Draw the graph of the function $y=2 x-x^{2}$ 4.5
(b) For acetic acid $\mathrm{K}_{\mathrm{a}}=1.754 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$, find $\left[\mathrm{H}^{+}\right]$if 0.1000 mol of acetic acid is dissolved in enough water to make 1.0001 . The stoichiometric concentration is equal to $0.100 \mathrm{~mol} \mathrm{I}^{-1}$.
7.5
(c) Find the Taylor series for $\log (x)$ expanding about $=1$. Space Also find its interval of convergence.
7.5
2. (a) Find the root of the equation space $x^{3}-5 x+3=0$, between 0.5 and 0.75 up to 3 decimal places by Newton-Raphson method.
7.5
(b) (i) Find the curvature of the function $y=(4 a x)^{1 / 2}$ at $x=0$.
4.5
(ii) Two lenghts have been measured as $56.57 \mathrm{~s} \pm 0.13 \mathrm{~s}$ and $75.12 \mathrm{~s} \pm 0.17 \mathrm{~s}$. Find the probable value of their sum and its probable error. 3
(c) Find the maximum and minimum value of the function :

$$
f(x)=x^{4}+4 x^{3}-2 x^{3}-12 x+7
$$

3. (a) For an ideal gas equation
$\mathrm{PV}=\mathrm{nRT}$,
Where P is the pressure, V is the volume, R is an ideal gas constant, n is the number of moles and T is the temperature. Find an
expression for $d p$ and calculate the approximate change in pressure of an ideal gas, if the volume is changed from 20.0001 to 19.8001 the temperature is changed from 298 . 15 k to 299.00 k , and the amount of gas in moles is changed from 1.0000 mol to 1.0015 mol .
7.5
(b) Using the trapezoidal approximation with five panels, calculate the value of the integral $\int_{10}^{20} 2 x^{2} d x$.
(c) If all values of x between a and b are equally probable, find the mean value of x, the root mean square value of x and the standard deviation of x.
7.5
4. (a) Fit a straight line to the data given below :

$x:$	1	2	3	4	5
$y:$	30	34	37	43	45

(b) If $u=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, show that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u
$$

(c) Perform the line integral:

$$
\int_{C} d u=\int_{C} x^{2} y d x+y^{2} x d y
$$

where C represents the line segment from $(0,0)$ to $(2,2)$. Also perform the line integral from $(0,0)$ to $(2,0)$ and then from $(2,0)$ to $(2,2)$.
7.5
5. (a) Evaluate $\int \frac{x^{2}+1 d x}{(x+2)^{3}(x-1)}$. 7.5
(b)(i) If $f(x, y)=a e^{\left.-b\left(x^{2}-y^{2}\right)\right)}$, then evaluate

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x}\right)_{y} \text { and }\left(\frac{\partial f}{\partial y}\right)_{x} . \tag{2}
\end{equation*}
$$

(ii) If $x=\sin t, y=\operatorname{sing} p t$, then prove that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+p^{2} y=0$. 5.5
(c) Evaluate
(i) $\lim _{x \rightarrow 0} \frac{e^{x} \sin x-x-x^{2}}{x^{2}+x \log (1-\mathrm{x})}$
(ii) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin x}\right)$.

